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Abstract. We derive expressions for the intensity of the Brillouin polarized spectrum of a molecular liquid
formed of axially symmetric molecules. These expressions take into account both the molecular dielectric
anisotropy and the modulation of the local polarisability by density fluctuations. They also incorporate all
the retardation effects which occur in such liquids. We show that the spectrum splits into a q-independent
rotational contribution and q-dependent term, which reflects the propagation of longitudinal acoustic
modes. In the latter, the two light scattering mechanisms enter on an equal footing and generate three
scattering channels. We study the influence of the two new channels and show that they may substantially
modify the Brillouin line-shape when the relaxation time of the supercooled liquid and the period of the
acoustic excitation are of the same order of magnitude.

PACS. 64.70.Pf Glass transitions – 78.35.+c Brillouin and Rayleigh scattering; other light scattering –
61.25.Em Molecular liquids

1 Introduction

The theory of inelastic, low frequency, light scattering in
molecular liquids has gone through different episodes over
the years. The presence of a narrow inelastic doublet in the
light scattering spectrum due to propagating sound waves
was predicted by Brillouin in 1922 [1]. Its first observation
was reported in 1930 by Gross, who noticed that the spec-
trum consisted of the Brillouin doublet superimposed on a
central Rayleigh line [2]. An explanation of this Rayleigh-
Brillouin triplet, based on the equations of macroscopic
hydrodynamics, was suggested by Landau and Placzek in
1934 [3] and was given in complete form by Mountain in
1966 [4]. This hydrodynamic description did not take into
account the nature of the constituents of the liquid. Yet,
it can play an important role and typical molecular ef-
fects have been detected on those low frequency spectra
(� 50 GHz). Let us briefly mention three of them.

One takes place with molecules that are non-spherical
tops. In that case, both the molecular polarisability ten-
sor and the tensor of inertia are anisotropic and they can
reasonably be considered to depend only on the molec-
ular orientation. The (collective) orientational dynamics
of the molecules can thus be detected through the cor-
responding fluctuations of the anisotropic part of the di-
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electric tensor. This corresponds to a central peak with a
line shape independent both of the scattering vector and
of the polarisation of the incident and scattered beams.
Conversely, the tensorial character of the detection mech-
anism (anisotropic part of the local dielectric tensor) im-
poses specific relationships between the intensities of the
spectra when recorded in different geometries. In partic-
ular, when, as is usually the case, dipole induced dipole
effects (DID) can be neglected [5], IV V (ω) = 4

3IV H(ω).
Here the first index corresponds to a vertical (V) polar-
isation of the incident beam, and the second index to a
vertical (V) or horizontal (H) polarisation of the scattered
beam, the scattering plane being horizontal.

The second effect is the possible coupling of the den-
sity fluctuations with some internal degree of freedom of
the molecule, having a temperature dependent lifetime,
τ(T ). Although the processes involved are governed by
classical mechanics and electrodynamics, we shall make
use of quantum terminology. The scattering of photons is
due to local rotational excitations and, depending on po-
larization, to longitudinal and transverse phonons. Moun-
tain [4] showed that, when ωBτ(T ) � 1, where ωB is
the longitudinal phonon frequency1, an additional central
peak appears in the VV spectrum, which can be formally

1 Note that, in the whole paper, we use the term ‘frequency’
as an abbreviation for ‘circular frequency’, ω = 2πν.
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interpreted as the introduction of a retardation effect in
the bulk viscosity of the liquid.

A third effect showed up in the study of the VH spec-
trum of viscous molecular liquids formed of anisotropic
molecules. A wave-vector dependent feature was detected,
which altered the line-shape of the central peak at moder-
ate viscosities [6] and transformed into an underdamped
transverse phonon spectrum for higher viscosities [7]. It
was rapidly recognised that the additional spectrum was,
indeed, due to a transverse, diffusive [8], or propagative [7]
excitation: any local shear motion inside the liquid couples
to the mean local molecular orientation, and renders the
latter anisotropic. This corresponds to a similar change of
the mean molecular polarisability tensor. The detection
mechanism of these shear modes is thus, as for the first
effect, a change in the molecular orientations.

In addition to molecular reorientations, other light
scattering mechanisms give rise to a depolarized spec-
trum, the most prominent being the DID mechanism. In
principle, this effect alone gives rise to the effects dis-
cussed above as shown in [9]. One thus has to enter
the difficult problem of estimating whether DID or the
molecular anisotropy dominates the spectra. The answer
depends on the system under consideration. For spheri-
cal constituents, for instance CCl4, there is no molecular
anisotropy and the depolarized spectrum is entirely due to
DID effects. However, these simple liquids typically cannot
be supercooled significantly. As a consequence the viscos-
ity of such liquids remains rather low and the crossover
from diffusive to propagating transverse modes cannot be
observed. The glass-forming system studied in most exper-
iments consist of molecular fluids, and rotational effects
dominate as soon as some anisotropy exists [10].

To rationalise the results obtained in VH light scatter-
ing experiments, some of the present authors (C.D. and
R.M.P) and co-workers, [11,12] here after referred to as [I],
proposed to somewhat generalise the usual hydrodynamic
equations by incorporating through phenomenological ar-
guments, in a systematic way:

a) the coupling of the shear deformation to a local mean
orientation of the molecules;

b) a retardation effect in each term corresponding to the
damping of a variable.

Concentrating on the case of axially symmetric molecules,
they characterised each of them by the orientation of its
axis û, with polar angles θ, φ, represented by P (θ, φ, r, t)
the local probability density of finding û in that direc-
tion, and defined a set of orientational density variables,
Qij(r, t) by:

Qij(r, t) =
∫

sin θ dθ dφP (θ, φ, r, t)
[
ûiûj − 1

3
δij

]
, (1)

where Latin indices i, j, .. represent Cartesian components.
The set of Qij(r, t) forms a symmetrical, traceless second
rank tensor.

It was proposed in [I] that the hydrodynamic equations
pertinent to the case of a such a molecular viscous liquid

would consist, after linearisation, of the two conservation
laws:

ρ̇(r, t) + ∂kJk(r, t) = 0, (2a)

J̇k(r, t) = ∂lσkl(r, t), (2b)

where ρ(r, t) is the mass density, J(r, t) is the mass cur-
rent density. Furthermore, they suggested the constitutive
equations for the stress tensor:

σij = (−δP + ηb ⊗ ∂kvk)δij + ηs ⊗ τij − µ ⊗ Q̇ij , (3)

and for the orientation:

Q̈ij = −ω2
0Qij − Γ ′ ⊗ Q̇ij + Λ′µ ⊗ τij . (4)

Here the momentum density J is related to the velocity
field v via the mean mass density ρm:

Ji(r, t) = ρmvi(r, t). (5)

The strain rate τij(r, t) is a second rank symmetric and
traceless tensor defined locally by:

τij = ∂jvi + ∂ivj − 2
3
δij∂kvk. (6)

The pressure change δP (r, t) is related to the instanta-
neous mass density change δρ(r, t) by:

δP (r, t) = c2δρ(r, t) , (7)

where c is the relaxed sound velocity. The retarded cou-
plings are given in terms of ηb, ηs, µ and Γ ′ and are,
respectively, the bulk and shear viscosities, the rotation-
translation coupling and the orientational relaxation func-
tions, the symbol ⊗ standing for a convolution product in
time. Finally, ω0 is the libration frequency of the axial
molecules and Λ′ is the rotation-translation coupling con-
stant, a quantity that takes into account the fact that ρ
and Qij have different dimensions.

Noting that, for motions that do not involve a local
density change, the local dielectric tensor can be written,
neglecting DID effects, as:

δεij(r, t) = bQij(r, t), (8)

it was shown in [I] that the preceding set of equations
leads to an expression of the intensity that describes the
complete thermal evolution of the VH spectrum of a su-
percooled molecular liquid.

Recently, another of the present authors (A.L.) and
co-worker [13] made an additional step. Within the
framework of the Molecular Mode Coupling Theory
(MMCT) [14], they expressed the complete dynamics of
a system of linear molecules characterised by the position
of their center of mass and their orientation. They showed
that, in the q → 0 limit, both the correlation functions
of the density fluctuations and of the orientation fluctu-
ations contributed to the light scattering mechanism in
the VV geometry. This result stressed the existence of
a coupling between these two variables for a longitudinal
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phonon. Nevertheless, the expression they obtained for the
VV intensity did not make clear two aspects. One was the
separation of the intensity into a q-independent term, rep-
resenting a pure rotational dynamics, and a hydrodynamic
contribution. The second was that the latter could be fac-
torized into two parts: the longitudinal phonon propaga-
tor and a phonon-photon scattering term in which both
the density and the orientational fluctuations enter on an
equal footing. Conversely, in another paper published soon
after by two of the present authors (T.F. and A.L.) and
co-workers [15], this separation into two different contri-
butions and the emergence of several scattering channels
was made apparent. Yet, the technique used in [15] did
not imply any specific light scattering mechanism; it was
thus not possible to predict from that paper which terms
would dominate the spectrum for a given physical system.

The present series of papers aims at completing the
picture of low frequency scattering in viscous molecular
liquids through the combination of two different aspects.
On the one hand, we shall present a full length, first princi-
ple derivation of equations (3, 4) through a Zwanzig-Mori
approach and obtain from this technique the correspond-
ing Onsager conditions which, when met by the relaxation
functions, guarantee the Brillouin spectra to have a posi-
tive value whatever the frequency. On the other hand, we
shall complete the results obtained in [I] by deriving, us-
ing the same phenomenological equations, expressions for
the intensities which can be measured in the VV and HH
scattering geometries; those are the geometries generally
used to study longitudinal phonons. The results will be
completely expressed with the help of the different quanti-
ties entering equations (3, 4) and a generalisation of equa-
tion (8) which includes density fluctuations.

This second series of results have immediate im-
plications for the experimentalist and they can be
derived through elementary algebraic techniques. The for-
mal proof of the validity of the phenomenological equa-
tions and of the conditions under which the spectra are
positive requires the use of more elaborate tools. In or-
der to make the present results accessible to as large an
audience as possible, we found it useful to reverse the log-
ical order and to split our presentation into two consecu-
tive papers. The second one (Part II) will give a complete
derivation of these equations and of their consequences,
only briefly sketched in [13], as well as a comparison be-
tween the results obtained through the phenomenological
approach and through the more abstract technique of [15].
The phenomenological part of our work (Part I) is organ-
ised as follows.

In Section 2, we will derive the expressions for the in-
tensity obtained in VV and HH experiments. Section 3
will discuss the changes in the line-shape of the longitu-
dinal phonons that can be expected when the coupling of
the rotation of the molecules to the longitudinal phonons
is taken into account in the expression of the dielectric
fluctuation. Finally, a brief summary of these results, a
comparison with the expressions previously obtained for
the VH intensity [I] and additional remarks will be pre-
sented in Section 4.

2 The longitudinal phonon Brillouin
scattering problem

In a light scattering experiment, the incident laser may be
characterised by the amplitude of the electric field Ei, and
its polarization êi. The spatial and temporal variation of
the electric field Ei(r, t) = Eiêi exp i(ki ·r−ωit) is given in
terms of the wave vector ki and the frequency ωi. From the
corresponding quantities of the scattered beam, êf ,kf , ωf ,
one obtains insight into the fluctuations of the sample that
occur at the scattering vector q = ki−kf at the frequency
shift ω = ωi−ωf . The thermal fluctuations of the dielectric
tensor δεij(r, t) can be decomposed into its spatial Fourier
components:

δεij(q, t) =
∫

d3r δεij(r, t) exp(iq · r), (9)

a notation that we will use also for other quantities for the
rest of this paper. This dielectric modulation represents a
momentary grating by which the laser light is scattered.
Due to the polarisation of the incident beam and of the
analyser for the scattered one, the detector collects only
fluctuations corresponding to the projection of the dielec-
tric fluctuations onto the two polarisations:

δεfi(q, t) = êfkδεkl(q, t)êil. (10)

Since the fluctuations readily disappear, there is a cor-
responding frequency shift, ω, leading to a total scattered
intensity:

Ifi(q, ω) =
∫ ∞

0

dt
〈
δεfi(q, t)δε0fi(q)∗

〉
cos(ωt), (11)

with the notation δε0fi(q) = δεfi(q, t = 0) and similarly for
other quantities. Since in real space the fluctuations are
real, one finds δε0fi(q)∗ = δε0fi(−q). Furthermore we left
out well-known factors that can be found, e.g. in the book
of Berne and Pecora [16].

In the case of longitudinal phonons, the expression for
δεij used in equation (8) is incomplete. A contribution
proportional to the mass density fluctuation, δρ, has to
be added, leading to:

δεij(r, t) = aδρ(r, t)δij + bQij(r, t) , (12)

where δρ and Qij are here the density change and its
molecular orientation counterpart. Their respective spa-
tial Fourier transforms couple dielectric fluctuations to
longitudinal phonons.

Since the constitutive equations for the stress tensor
and the equation of motion of the orientation are in the
form of integro-differential equations it is convenient to
use the Laplace-Transform (LT), which we use with the
convention for functions f(t):

LT [f(t)](ω) = i
∫ ∞

0

dt f(t) exp(−iωt). (13)
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The scattered intensity Ifi(q, ω) can thus be extracted
as the imaginary part of:

χ(êi, êf ,q, ω) = LT
[〈

δεfi(q, t)δε0fi(q)∗
〉]

(ω), (14)

which defines the light-scattering problem in terms of cor-
relation functions.

2.1 Expressions for the VV geometry

In the rest of this paper, we shall make use of the usual
Berne and Pecora axes for light scattering, renamed, in
agreement with [I], ‖ for the direction of q, ⊥ for the
direction perpendicular to the scattering plane, and ⊥′ for
the direction perpendicular to ‖ and ⊥. We are interested
here in the usual VV scattering geometry where êi and
êf are parallel to ⊥ so that the r.h.s. of equation (10)
reduces to aδρ + bQ⊥⊥. The expression of χ(êi, êf ,q, ω)
is thus completely determined by the knowledge of the
Laplace transform of the four correlation functions:
〈δρ(q, t)δρ0(q)∗〉, 〈δρ(q, t)Q0

⊥⊥(q)∗〉, 〈Q⊥⊥(q, t)δρ0(q)∗〉
and 〈Q⊥⊥(q, t)Q0

⊥⊥(q)∗〉, that we shall compute in turn.
The spatial Fourier transforms of equations (2a)

and (2b) can be grouped into the single equation:

δρ̈(q, t) = q2σ‖ ‖(q, t). (15)

Inserting the constitutive equation for σ‖‖, equation (3),
and performing the Laplace transform yields with the help
of equations (7) and (18), see below:

− c2q2δρ(q, ω) − q2µ(ω)
[
ωQ‖‖(q, ω) − Q0

‖‖(q)
]

=[
q2

ρm

[
ηb(ω) +

4
3
ηs(ω)

]
− ω

] [
ωδρ(q, ω) − δρ0(q)

]
. (16)

Here, we left out the term containing ρ̇0(q) since it will
drop out once correlation functions with variables of even
time parity are built. Due to the coupling we also need
the Fourier-Laplace transform of equation (4):

− ω2
0Qij(q, ω) − iΛ′µ(ω)τij(q, ω) =

[Γ ′(ω) − ω]
[
ωQij(q, ω) − Q0

ij(q)
]
. (17)

As above, the term containing Q̇0
ij(q) has been dropped

since we will correlate equation (17) with quantities of
even time parity only. Using:

τ‖‖(q, ω) = −4
3
iqv‖(q, ω)

= − 4i
3ρm

[
ωδρ(q, ω) − δρ0(q)

]
, (18)

τ⊥⊥(q, ω) =
2
3
iqv‖(q, ω)

=
2i

3ρm

[
ωδρ(q, ω) − δρ0(q)

]
, (19)

one obtains from equation (17) for the orientational fluc-
tuations:

Q‖‖(q, ω) = − 4Λ′

3ρm
r(ω)

[
δρ(q, ω) − δρ0(q)/ω

]

+
(

1 − ω2
0

D(ω)

)
Q0

‖‖(q)

ω
, (20)

Q⊥⊥(q, ω) =
2Λ′

3ρm
r(ω)

[
δρ(q, ω) − δρ0(q)/ω

]
+

(
1 − ω2

0

D(ω)

)
Q0

⊥⊥(q)
ω

· (21)

We have introduced, here, the quantity D(ω) which deter-
mines the frequency dependence of the pure orientational
motions:

D(ω) = ω2
0 + ωΓ ′(ω) − ω2, (22a)

and for later use we also introduce the rotation-translation
coupling:

r(ω) = ωµ(ω)[D(ω)]−1. (22b)

From equations (16, 20, 21) one can solve for orientational
and density fluctuations in terms of their respective initial
values:

ωδρ(q, ω) = q2A(q, ω) + δρ0(q), (23)

ωQ‖‖(q, ω) =
(

1 − ω2
0

D(ω)

)
Q0

‖‖(q)

− 4Λ′r(ω)
3ρm

q2A(q, ω), (24)

ωQ⊥⊥(q, ω) =
(

1 − ω2
0

D(ω)

)
Q0

⊥⊥(q)

+
2Λ′r(ω)

3ρm
q2A(q, ω), (25)

with:

A(q, ω) = PL(q, ω)
[
c2δρ0(q) − ω2

0r(ω)Q0
‖‖(q)

]
. (26)

Here PL(q, ω) abbreviates the longitudinal phonon prop-
agator:

PL(q, ω) =
[
ω2 − q2c2 − q2ωηL(ω)/ρm

]−1
, (27)

and, in this equation, the coupling to the parallel compo-
nent of all the damping mechanisms is expressed in terms
of the longitudinal viscosity:

ηL(ω) = ηb(ω) +
4
3

[
ηs(ω) − Λ′

ω
D(ω)r(ω)2

]
. (28)

The density-density and the density-orientation correla-
tion functions are then obtained from equations (23, 24):

LT
[〈

δρ(q, t)δρ0(q)∗
〉]

(ω) =
1
ω

[
1 + q2c2PL(q, ω)

] 〈∣∣ρ0(q)
∣∣2〉 , (29a)

LT
[〈

δρ(q, t)Q0
⊥⊥(q)∗

〉]
(q, ω) =

−q2 ω2
0r(ω)
ω

PL(q, ω)
〈
Q0

‖‖(q)∗Q0
⊥⊥(q)

〉
, (29b)
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once one has taken into account that both 〈|ρ0(q)|2〉 and
〈Q0

‖‖(q)∗Q0
⊥⊥(q)〉 are of order unity, while:

〈
δρ0(q)∗Q0

⊥⊥(q)
〉

=
〈
Q0

⊥⊥(q)∗δρ0(q)
〉

= O(q2l2), (30)

where l is a typical intermolecular distance. The preced-
ing relation derives from the fact that one can write, for
instance:〈

Q0
‖‖(q)∗ρ0(q)

〉
=

m

3N

〈
N∑

α=1

N∑
β=1

eiq·(Rα−Rβ)
[
3û2

‖β − 1
]〉

, (31)

where Rα (resp. Rβ) are molecular centre of mass po-
sitions and ûβ‖ is the projection of the unit vector û of
the molecule β on the direction ‖. The exponential factor
in the preceding equation can be expanded in powers of
q · (Rα −Rβ). One easily convinces oneself that, for sym-
metry reasons, the first two terms of the expansion average
to zero so that the first nontrivial contribution comes from
the [q · (Rα − Rβ)]2 term, which is O(q2l2). Conversely,
using the same argument for the averages appearing in
equations (29), one finds that the first term of the expan-
sion already gives a nonzero value in the long-wavelength
limit and is proportional to the absolute temperature. The
dependence on q can thus be omitted in those expressions
and will also be, in the rest of the paper, for all those
equal-time averages.

For the VV scattering one has to study also the auto-
correlation of the ⊥⊥ component in the orientation. From
equation (25) one obtains:

LT
[〈

Q⊥⊥(q, t)δρ0(q)∗
〉]

(ω) =
2Λ′

3ρm

r(ω)
ω

c2q2PL(q, ω)
〈∣∣ρ0

∣∣2〉 , (32)

LT
[〈

Q⊥⊥(q, t)Q0
⊥⊥(q)∗

〉]
(ω) =

1
ω

(
1 − ω2

0

D(ω)

)

×
〈∣∣Q0

⊥⊥
∣∣2〉 − 2Λ′

3ρm
ω2

0

r(ω)2

ω
q2PL(q, ω)

〈
Q0

‖‖Q
0
⊥⊥

〉
·

(33)

Here some comments are in order.
a) One readily verifies that, would one have taken the

⊥⊥′ component of equation (17) instead of its ⊥⊥ com-
ponent, one would have obtained:

LT
[〈

Q⊥⊥′(q, t)Q0
⊥⊥′(q)∗

〉]
(ω) =

1
ω

(
1 − ω2

0

D(ω)

) 〈∣∣Q0
⊥⊥′

∣∣2〉 · (34)

Up to a b2 factor, the imaginary part of the r.h.s. of the
preceding equation is simply what is referred to as the
back scattering depolarised spectrum, IV H(ω), which is
not sensitive to q for long wavelengths. The imaginary part
of the first term of equation (33) is thus the non-acoustic

part IV V (ω), up to the same b2 factor (see Eq. 12). Fur-
thermore, since Qij is a traceless tensor of order two [16]:

〈∣∣Q0
⊥⊥

∣∣2〉 =
4
3

〈∣∣Q0
⊥⊥′

∣∣2〉 ; (35a)

the first term of the r.h.s of equation (33) represents the
well-known result that the q-independent part of IV V co-
incides with 4/3 of the back scattering spectrum IV H(ω).

b) The four other terms, equations (29, 32) and the
second term of the r.h.s of equation (33) all contain the
phonon propagator, PL(q, ω), and are thus q-dependent.
Also, due to the spherical symmetry of the liquid:〈

Q⊥⊥(q, t)δρ0(q)∗
〉

=
〈
δρ(q, t)Q0

⊥⊥(q)∗
〉 · (35b)

Comparing equations (29b) and (32), the preceding rela-
tion implies:

〈
Q0

‖‖Q
0
⊥⊥

〉
= − 2Λ′

3ρm

c2

ω2
0

〈∣∣ρ0
∣∣2〉 , (35c)

while, because Qij is a traceless tensor, one also has the
relationship:

〈
Q0

‖‖Q
0
⊥⊥

〉
= −1

2

〈∣∣∣Q0
‖‖

∣∣∣2〉 · (35d)

Inserting these results into equations (11, 12), one finally
obtains for the intensity in a VV scattering experiment:

IV V (q, ω) =
〈|Q0

⊥⊥′ |2〉
ω

Im

{
4b2

3

[
1 − ω2

0

D(ω)

]

+
ρm

Λ′ (ω0q)2PL(q, ω)
[
a +

2Λ′

3ρm
br(ω)

]2
}

, (36)

where the preceding formula makes clear that the first
term is 4/3 the IV H(ω) back scattering spectrum.

The preceding results call for two remarks.
a) Equation (35c) simply expresses the equipartition

of energy between the centre of mass motions and the
libration motions:

3ω2
0

4Λ′

〈∣∣∣Q0
‖ ‖

∣∣∣2〉 =
c2

ρm

〈∣∣ρ0
∣∣2〉 ∝ kBT, (37)

and this is a necessary condition for the consistency of
the phenomenological theory summarised in Section 1.
Equation (37) will appear in a natural way in the micro-
scopic derivation of the phenomenological equations (see
Eqs. (30c, 31b) of Part II).

b) Equation (36) completes previous results obtained
in [13], separating clearly the role of the phonon propa-
gator, PL(q, ω) from that of the scattering mechanisms
(a and b, with appropriate factors). It also separates
the non-hydrodynamic, rotational contribution (first term
of Eq. (36)) from the hydrodynamic one. In the latter,
one part (term in b2) is entirely due to scattering by
the anisotropic part of the polarisability tensor of the
molecules. The same mechanism was at the origin of the
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q-dependent part of IV H(q, ω) in [I] and in both cases the
scattered intensity is proportional to a phonon propagator,
longitudinal or transverse, multiplied by the same r(ω)2
factor; the power two stresses that the molecular orienta-
tion acts twice, once as the source of the fluctuation and,
the second time, as the detection mechanism. The more
complex form obtained here for the q-dependent part of
IV V (q, ω) is the direct consequence of the existence of two
parallel channels, δρ and Qij , in the case of longitudinal
phonons; this is in contradistinction with the single chan-
nel case of the transverse phonons [I].

2.2 Results for the HH geometry

The same technique can be used to derive the intensity
which can be obtained in an HH experiment; indeed in
such a case:

δεHH(q, t) = δε⊥′⊥′(q, t) sin2 θ

2
− δε‖‖(q, t) cos2

θ

2
,(38)

where θ is the scattering angle. Expanding in terms of
density and orientation, one has to consider:

δεHH(q, t) = −aδρ(q, t) cos θ + bQ⊥′⊥′(q, t) sin2 θ

2

− bQ‖‖(q, t) cos2
θ

2
· (39)

To calculate the corresponding auto-correlation function
as required by equation (11), one needs again the dynam-
ics of density and orientation. Repeating the calculations
of Section 2.1, one convinces oneself that equation (25)
remains valid if ⊥⊥ is replaced by ⊥′⊥′. Due to rota-
tional symmetry, the cross correlators are again identical
as in equation (35b). Of the six correlation functions that
can be built in equation (39), one can easily compute the
missing three by the methods of the preceding subsection.
From equation (24), one finds:

LT
[〈

Q‖‖(q, t)Q0
⊥′⊥′(q)∗

〉]
(ω) =

{ (
1 − ω2

0

D(ω)

)

+
4Λ′ω2

0

3ρm
r(ω)2q2PL(q, ω)

}〈
Q0

‖‖Q
0
⊥′⊥′

〉
ω

, (40)

LT
[〈

Q‖‖(q, t)Q0
‖‖(q)∗

〉]
(ω) =

{(
1 − ω2

0

D(ω)

)

+
4Λ′ω2

0

3ρm
r(ω)2q2PL(q, ω)

}〈∣∣∣Q0
‖‖

∣∣∣2〉
ω

, (41)

LT
[〈

Q‖‖(q, t)δρ0(q)∗
〉]

(ω) =

− 4Λ′c2

3ρm
r(ω)q2PL(q, ω)

〈∣∣δρ0
∣∣2〉

ω
· (42)

Collecting all the terms appearing in equations (14, 39)
with δεfi = δεHH , one arrives at our final expression for
the HH scattering spectrum:

IHH(q, ω) =

〈∣∣Q0
⊥⊥′

∣∣2〉
ω

{
4b2

3

(
1 − 1

4
sin2 θ

) [
1 − ω2

0

D(ω)

]

+
ρmω2

0

Λ′ q2PL(q, ω)
[
a cos θ − bΛ′r(ω)

3ρm
(3 + cos θ)

]2
}

·
(43)

For a given q, all other scattering geometries give in-
tensities, which are linear combinations of IV V (q, ω) and
IHH(q, ω) as well as of IV H(q, ω), whose q-dependent part
detects the transverse phonon, whereas the q-independent
part detects again IV H(ω), equation (34). It is thus not
possible to detect independently the contributions of the
three terms entering, e.g. equation (36). Equations (36)
and (43) are very compact expressions in which the q-
dependent and the q-independent parts have been sepa-
rated. They allow to study, within some approximations
for the different quantities entering them, the influence of
the rotation-translation coupling on the shape of a typical
longitudinal phonon spectrum. Using for those quantities
the same toy model as in [13], we shall proceed to this
comparison in the next section.

3 Analytical and numerical discussion

3.1 Introduction

In this section, we discuss some typical features of the
spectra obtained in a VV scattering experiment. As we
shall see, the rotation-translation coupling gives rise to
spectra which differ in shape and, more importantly, in
some cases in the values for the relaxation times, would
they be extracted from the widely used model where den-
sity fluctuations are considered as the sole light scattering
mechanism for the q-dependent part of the polarized spec-
trum, i.e.:

Isingle
V V (q, ω) =

4
3
IV H(ω)

+
a2c2q2

ω

〈∣∣ρ0
∣∣2〉 ImPL(q, ω). (44)

In order to demonstrate the effects which take place
when translation-rotation coupling is non-negligible, we
generate data for the q-dependent part of a VV experiment
by using the full expression, equation (36). The spectral
shape is then determined by the frequency dependence of
the four fundamental memory kernels ηs(ω), ηb(ω), µ(ω)
and Γ ′(ω). To keep the discussion as simple as possible,
we shall model the relaxation kernels by single exponential
Debye processes:

M(ω) = ∆2
M

iτ
1 + iωτ

, (45)
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where M is any of ηs, ηb, µ or Γ ′. Once the spectra have
been generated, we treat them as raw data and analyse
them by a ‘density-only’ model, equation (44), in which,
see equation (27), ωL = cq and ηL(ω) have to be fitted;
in the spirit of the simplifying assumptions made above,
ηL(ω) is also a simple Debye process, characterised as in
equation (45), by an amplitude, ∆2

L, and a fitted relax-
ation time, τL.

Let us first make some comments on the general shape
of the spectra. For a given wave vector q, the second part
of the r.h.s of equations (36 or 43) is the sum of three
terms that correspond to three channels of detection of
the longitudinal phonons: a density-only channel, propor-
tional to a2, an orientation-only one (∝ b2) and a cross
channel of density and orientation (∝ ab). For a simple
liquid, the first one is predominant, which depends solely
on PL(q, ω) and the shape of the corresponding spectrum
has been studied in detail, in particular for supercooled
liquids, in many papers [17–21]. The purpose of these pa-
pers was basically to extract information on the memory
function ηL(ω), and on its dependence on temperature.
In particular, if ηL(ω) is characterised by a single Debye
relaxation process with a relaxation time τL and an am-
plitude such that, whatever τL, ImPL(q, ω)/ω exhibits a
well-defined peak, the density spectrum varies in a spe-
cific manner with τL: for ωBτL 	 1, with ωB = cq, the
spectrum contains a quite narrow Brillouin peak centered
around, say ωB1, with a weak background for other fre-
quencies. The same is true for ωBτL � 1, but the peak
is now centered at ωB2 � ωB1. The only regime where
a rather precise information on τL is obtained occurs for
ωBτL ∼ 1, i.e. approximately 1/5 � ωBτL � 5.

The influence of the orientation-only channel on the
shape of the q-dependent part of the VV spectrum was
discussed in [13], with the help of a similarly simple model
for the four relaxation kernels; conversely, the cross chan-
nel (∝ ab) was not studied in that paper. We will thus
first compare the shape of the contributions of the three
channels. We shall then discuss the line-shape of the total
q-dependent part of the VV spectrum, focusing mostly on
the ωBτ ∼ 1 regime. To remain as close as possible to
the results presented in [13], we take the same numerical
values for the various temperature independent parame-
ters, c = 0.6, q = 0.02, ω0 = 1, the units being chosen such
that Λ′ = 1 and ρm = 1. In order to restrict the number
of parameters, the relaxation time τ is the same for all
four memory kernels indicated in equation (45), and we
use the same values of τ as in [13], simply studying also
and in more details the ωBτ ∼ 1 regime. The amplitudes
are taken as ∆ηb

= 1/
√

2, ∆ηs =
√

3/8 and ∆µ = 4
√

3/16
in order to use the same phonon propagator as in [13].
Since the Brillouin peak is at much smaller frequencies
than the libration frequency, ω0, the spectra are not sen-
sitive to the value of ∆Γ ′ in the frequency window studied
here. Hence, we set ∆Γ ′ = 0, or Γ ′(ω) ≡ 0. Finally, one
needs a plausible numerical value for the ratio 2Λ′a/3ρmb.
Its estimate can be obtained from the following consider-
ations. Impulsive Stimulated Thermal Scattering (ISTS)
experiments have been performed on supercooled liquids

formed of anisotropic molecules such as salol and OTP. It
has been recognised recently that the spectral shape of the
signal obtained in this pump-probe experiment is sensitive
to the polarisation of the probe beam [22,23]. In these ex-
periments, the origin of the signal is not the thermal fluc-
tuations of δρ and Qij but the intensity of the pump beam;
conversely, the signal is detected through the dependence
of the local dielectric tensor on density and orientation
as in a VV experiment. The ISTS signal then turns out
to be linear in δρ and Qij with the same coefficients as
in equation (36). Making use of different polarisations of
the probe beam, the contribution of the two variables can
be disentangled [22], and a value for a typical molecular
liquid, metatoluidine, of the order of 0.5 can be derived
from the results of [22]. In order to overemphasise the ef-
fect of the additional scattering channels, we have found it
convenient, in the present paper, to choose a value equal
to 4/

√
27 ≈ 0.77. All the results presented in this section

have been obtained with those numerical values.

3.2 Analysis of the role of the two additional channels

3.2.1 The ωBτ 	 1 and the ωBτ � 1 regimes

– Preliminary remarks

As already alluded in 3.1 of this section, the two regimes
ωBτ 	 1 and ωBτ � 1 are rather uninteresting from the
practical point of view of determining a value of τ : the
most important piece of information is contained in the
position of the Brillouin peak, its linewidth being much
more difficult to analyse because its exact line-shape can-
not be determined. The remaining low intensity part of
the Brillouin line cannot be studied experimentally be-
cause it cannot be disentangled, either from the wing of
the central peak (first term of the r.h.s of Eq. (36)) for high
temperatures, i.e. ωBτ 	 1, or from a flat background for
low temperature, ωBτ � 1. Let us just mention here that,
even in these regimes, at very low frequency, the r.h.s of
the second term of equation (36) can lead to a negative
contribution to the intensity, due to the existence of the
r(ω) and r(ω)2 terms, as was already mentioned for the
latter case in [13]. This is not an artefact of the theory,
equations (3, 4, 12), but a consequence of the introduc-
tion of translation-rotation coupling into these equations.
If one takes it into account, it is no longer necessary that
the q-dependent part of equation (36) is always positive,
the requirement being that only the full r.h.s of this equa-
tion is positive. We shall defer the discussion of this point
to Section 4 and, mostly, to Part II [24].

In spite of the preceding remark on the δ-like shape
of those spectra in the two regimes, their study turns
out to be instructive, because the way the two additional
channels contribute to the spectrum will be similar in the
ωBτ ∼ 1 regime we shall study later; there, one will di-
rectly detect their influence on the line-shape while their
analytical study is easier in the extreme cases we con-
sider here. We shall first develop analytic formulae, then
demonstrate that these effects do show up in the line-
shape of the Im[r(ω)PL(q, ω)/ω] and Im[r(ω)2PL(q, ω)/ω]
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Table 1. Analytic form for the different scattering channels in the two limiting cases. The first line, a2, gives the analytic form
of Im[PL(q, ω)/ω] for ω � ωB , at the peak value and for ω � ωB , for the two cases ωBτ � 1 and ωBτ � 1. The last four
lines give the factors by which the first line has to be multiplied to obtain the analytical form of the corresponding term; the
factors are given for the b2 channel (second and third lines) and for the ab channel (fourth and fifth lines). In both cases, the
two terms, R(eal) I(maginary) and I(maginary)R(eal), are given in the even, respectively odd, lines (see Eq. (46)).

ωBτ � 1 ωBτ � 1

ω � ωB Brillouin peak ω � ωB ω � ωB Brillouin peak ω � ωB

a2 ∆2τ
q2c4

1
∆2q3cτ

q2∆2τ
ω4

∆2

ω2τ 2q2(c2 + ∆2)2
τ

q2∆2
q2∆2

ω6τ

b2 RI −(ωτ )2 −(ωτ )2 1 1

b2 IR −(ωτ )2 c2

∆2 (ωτ )2 ω2

q2∆2 − c2 + ∆2

∆2
ω2

q2∆2

ab RI −(ωτ )2 −(ωτ )2 1 1

ab IR − c2

∆2
ω2

q2∆2 − c2 + ∆2

∆2
ω2

q2∆2

spectra, if analysed with sufficiently large accuracy, and
finally show that, nevertheless, the q-dependent part of
the VV spectrum is little affected by these effects in the
two cases, ωBτ 	 1 and ωBτ � 1, in the region of the
Brillouin peak.

– Analytical results

Table 1 displays the analytical form of the leading
terms for the three channels, viz. pure density (a2), pure
rotation (b2) and cross channel (ab), both for ω 	 ωB

and ω � ωB; for the sake of completeness, the table also
displays the approximate Brillouin peak intensity related
to the first channel. In order to make this table as easy
to read as possible, the quantities for the b2 and ab chan-
nels are the factors by which the results of the first line
(a2 channel) have to be multiplied in order to obtain the
corresponding contribution to the intensity.

Furthermore, while the intensity of the pure density
channel is simply equal to Im[PL(q, ω)/ω], in the case
of the pure orientation channel for instance, its intensity
Ib2(ω) is given by:

1
ω

Im[r(ω)2PL(q, ω)] =
1
ω

{
Re

[
r(ω)2

]
Im [PL(q, ω)]

+Im[r(ω)2]Re[PL(q, ω)]
}

, (46)

and a similar expression holds for the cross channel. Since
Im[PL(q, ω)/ω] has typical functional form [1+X2]−1 with
X = ω − ωB for ω > 0, the corresponding real part
Re[PL(q, ω)/ω] is described by X/[1 + X2]; the contribu-
tions of the two terms of equation (46), and similar terms
in the ab channel, have different line-shapes and have to
be considered separately. They are denoted as RI and
IR contributions in the lower part of Table 1. Finally,
we simplified our study by admitting that, in the lim-
ited frequency range for which this table is constructed,
ωB/10 � ω � 10ωB, the dimensionless quantities ωτ and
ωBτ have always the same order of magnitude. Table 1
shows that one has to study three different cases:

a) ωBτ � 1
Within the approximation just mentioned, the b2 and

the ab channels have the same multiplying factors, and
their RI parts give rise to exactly the same line-shape
as the a2 channel. For ω � ωB, the (ω/q∆)2 factor of
the IR term increases the intensity with respect to the
a2 channel; conversely, for ω 	 ωB, the same IR term
gives a negative contribution: the relative intensities
will be lower than in the a2 channel.

b) ωBτ 	 1
– The b2 channel has a general (ωτ)2 factor which ren-
ders its contribution small on the whole frequency do-
main whatever its sign. The IR part gives a negative
contribution for ω < ωB which changes into a positive
one at some value above ωB, while the RI part always
remains negative.
– The ab channel gives a line-shape quite different from
the ones discussed above since it is dominated by its IR
part with a prefactor of order unity while the RI part
is suppressed by a factor of (ωτ)2. This results into a
typical X/[1 + X2] line shape with a negative contri-
bution for ω < ωB, a minimum below ωB, a zero in the
vicinity of ωB, and a positive contribution above ωB,
the maximum of the latter being slightly above ωB.

– Numerical results

Figures 1, 2 and 3 illustrate the preceding results. Fig-
ure 1 displays the intensity related to b2 channel, Ib2 , for
τ = 1, 102, 103 and 105. The crossover regime ωBτ ∼ 1
corresponds to τ ∼ 102. The different curves exhibit the
shapes discussed above. Note that for clarity the spec-
trum corresponding to τ = 1 has been enhanced by a
factor of 100. Yet, the spectra for ωBτ � 1 exhibit an
additional, strongly negative feature for ω 	 ωB, which
was not studied in Table 1, as it is related to the ωτ 	 1
part of these spectra.

The different shapes of the Iab spectra are shown in
Figure 2. These shapes agree with what can be inferred,
in the ωBτ � 1 and ωBτ 	 1 regimes, from the results
shown in Table 1.

Finally, Figure 3 represents the ratio of the total q-
dependent part of IV V , equation (36), called Itot, to the
a2 channel intensity alone, Ia2 . Here the two spectra are
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Fig. 1. The intensity of the orientation-only channel Ib2 for
four values of τ : τ = 1, 102, 103 and 105. The spectrum for
τ = 1 has been multiplied by 100 to make it visible on the
same figure.
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Fig. 2. The intensity of the cross channel Iab for the same
values of τ as in Figure 1. The shape of the τ = 1 spectrum
differs strongly from the remaining ones.

normalised to the same intensity at the Brillouin peak.
The factor (ω/q∆)2, general to the IR part for ω � ωB,
explains the increase of the ratio in this frequency domain,
a signature that will remain also in the ωBτ ∼ 1 regime.
Also, this ratio always decreases, more or less strongly, be-
low ωB due to the negative value of the same term in this
frequency range. This effect also shows up in the ωBτ ∼ 1
regime, as can be inferred from Figure 3 for the curve cor-
responding to τ = 102. Conversely, one observes that the
ratio is close to unity for frequencies in the vicinity of ωB.
As long as ωBτ � 1 or ωBτ 	 1, the shape of the Brillouin
line of the total q-dependent part of IV V is indistinguish-
able from that of the pure density channel. Hence, one
needs to analyse the ωBτ ∼ 1 regime to detect a difference
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Fig. 3. The ratio of KItot to Ia2 for the same values of τ as in
Figure 1. For each spectrum, K is adjusted in a such a way that
the intensities of the two spectra are identical at the Brillouin
peak. The horizontal line, drawn for a ratio equal to 1, allows
to locate these Brillouin peaks for the four cases.

between the ‘density-only’ and the ‘density+orientation’
scattering model.

3.2.2 Numerical analysis of the ωBτ ∼ 1 regime

In order to look for an experimentally detectable effect, we
have computed the total q-dependent part of the intensity,
Itot, for the 10 values of τ reported in the first column of
Table 2, all close to the ωBτ ∼ 1 condition. Those 10
spectra are shown in Figure 4 as dashed lines and we have
checked that they notably differ from the scaled spectra
that can be obtained for the same values of τ considering
a line-shape as given by equation (44). To explore more
closely the effect of the additional channels, both on the
line shape and on a possible misinterpretation of these
spectra in terms of ‘density-only’ spectra, we have tried
to fit them with a Im[PL(q, ω)/ω] expression, where the
longitudinal viscosity was expressed as:

q2ωηL(ω)/ρm = ∆2
L

iωτL

1 + iωτL
+ iωγL. (47)

A value of γL, consistent with a previous Brillouin scat-
tering study of m-toluidine [19], γL = 10−5, was chosen,
and fits for the spectra corresponding to the ten different
values of τ were performed, treating ∆L, ωL = cq and τL

as free parameters.
The numerical values extracted from the best fits, as

well as the value of the peak frequency of Itot, ωB, are
reported in Table 2. The fits are displayed in Figure 4
and they show that the closer ωBτ is to unity, the worse
is the agreement with the density-only model. Note that
the value of 2Λ′a/3ρmb has been overestimated to empha-
size the effect. The discrepancy between the fit function
and the computed spectra has always the characteristic
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Fig. 4. Itot (dashed line) for 10 values of τ in the vicinity of ωBτ = 1, and its fit (full line) with a Ia2 model (see text). The
values of τ and ωBτ are indicated in each case.

Table 2. Fit parameters of the total spectrum for 10 different
values of τ . The first column gives the values of τ for which
the total spectra, Itot, are computed. The three next columns
give the fit values for τL, ∆L (see Eq. (47)) and ωL, the relaxed
phonon frequency, while the last one gives the frequency, ωB, of
the peak of Itot. Note that, for these values of τ , Itot exhibits a
broad enough maximum (see Fig. 4) for ωB to be defined with
an uncertainty of order 5 × 10−4.

τ a τL
b ∆L

b ωL
b ωB

c

15 13.4 0.0210 0.0125 0.0121

20 19.8 0.0200 0.0128 0.0123

25 27.6 0.0190 0.0131 0.0125

30 37.0 0.0180 0.0133 0.0132

50 67.7 0.0170 0.0141 0.0186

80 109 0.0160 0.0147 0.0204

100 136 0.0156 0.0149 0.0207

125 175 0.0154 0.0148 0.0208

150 209 0.0152 0.0149 0.0210

200 270 0.0150 0.0150 0.0210

a initial value
b fitted value
c deduced from Itot(ω).

features discussed before: the fit function has a lower in-
tensity than the computed one above the Brillouin peak
and a higher one below.

The trends reported in Table 2 are worth commenting:
the ratio τL/τ increases with longer relaxation times τ ,
i.e. lower temperatures: the apparent relaxation time τL

is longer than the original one. In Brillouin experiments
on supercooled liquids, this effect will take place for re-
laxation times of the order of some nanoseconds, while it
cannot be identified for much longer relaxation times. The
effect will then be apparent in the region where the curve
log τ versus 1/T has its maximum curvature for fragile
glass forming liquids. This curvature is the origin of the
nonzero value of the Vogel-Fulcher temperature: an appar-
ent increase of the relaxation times in this time window
will decrease this curvature and result in an artificial de-
crease of the Vogel-Fulcher temperature.

Table 2 also exhibits an effect that has not been re-
ported in experimental studies of Brillouin spectra of su-
percooled liquids: a decrease, instead of an increase, of
∆L upon cooling [17–21]. This contrasts with the familiar
trend of ωL which increases with τ as is shown in Ta-
ble 2. The unconventional dependence on temperature of
∆L may be an artefact of the oversimplified model for the
memory kernels.
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4 Summary and final remarks

The present paper aimed at giving complete and trans-
parent expressions for polarised Brillouin light scattering
experiments within the framework of the phenomenologi-
cal equations recalled in the Introduction. These equations
have been derived through the use of heuristic arguments
in [I] and a demonstration of their validity has been briefly
sketched in [13]. Their detailed proof will be given in the
second paper of this series (Part II), where the same set
of relevant variables, i.e. mass density ρ, orientation Qij

and their respective currents are considered.
The expressions for the intensity in the VV and HH

scattering geometry are given by equations (36) and (43).
In both cases, the spectrum naturally splits into a sum
of two terms: one describes the pure orientational dynam-
ics of the molecules, decoupled from density fluctuations;
the second term involves the propagation of longitudinal
phonons. The corresponding longitudinal viscosity com-
prises contributions from the relaxation of the transla-
tional and orientational motions. The coupling of these
two types of motion is characterised by the translation-
rotation coupling constant, Λ′, and by the frequency-
dependent rotation-translation function, µ(ω), while the
orientational dynamics is characterised by D(ω) which de-
pends very weakly on ω in the region of interest for Bril-
louin scattering studies. The role of Λ′ and r(ω) in the
spectra is twofold: first, their play a role in the phonon
propagator and, second, they enter in the detection mech-
anism via the factor [a + 2Λ′br(ω)/3ρm].

The role of the molecular polarisability anisotropy in
detecting both the uncoupled orientational dynamics and
the transverse, diffusive or propagative modes with wave
vector q already appeared in [I]. For the sake of com-
pleteness, we reproduce here the results obtained in that
paper under a from that allows for an easy comparison
with equation (36):

IV H(q, ω) =

〈∣∣Q0
⊥⊥′

∣∣2〉
ω

Im

{
b2

[
1 − ω2

0

D(ω)

]

+
ρm

Λ′ (ωoq)2 cos2
θ

2
PT (q, ω)

[
Λ′

ρm
br(ω)

]2
}

, (48)

where the q-dependent part is now mediated by the trans-
verse phonon propagator:

PT (q, ω) =
[
ω2 − q2ρ−1

m ωηT (ω)
]−1

, (49)

characterised by the transverse viscosity:

ηT (ω) = ηs(ω) − Λ′

ω
D(ω)r(ω)2. (50)

The absence, in the second square bracket of equation (48)
of the factor 2/3 is in agreement with a result of [15], as
will be discussed in Part II.

We studied, in Section 3, the change in the spectral
line-shape brought by taking into account the additional

light scattering channels. We concentrated on the second
term of the r.h.s. of equation (36), mostly discussing the
type of distortion produced by these new terms in the
spectral shape in the vicinity of the Brillouin peak. Let us
add some remarks.

Firstly, in Section 3, the numerical calculation of the
total intensity was performed using a positive ratio b/a
and we assumed through equation (44) that µ(t) could
be characterised by some amplitude, ∆2

µ, and a smooth,
positive, decreasing function of time that approaches
zero for long times. Contrary to the coefficient a in
equation (12), the numbers b and ∆2

µ are not always
positive, but we want to point out that their product b∆2

µ

is commonly a positive quantity, for prolate as well as
for oblate axial molecules. Indeed, on the one hand, the
polarisability anisotropy, b, is usually positive for prolate
molecules giving rise to glass-forming liquids and negative
for the oblate ones. On the other hand, the sign of µ(t)
is also shape dependent as can be inferred from the
following argument. Subjected to a steady shear flow, τij ,
a molecular liquid builds up a nonzero stationary mean
orientation Qij which is easily deduced from equation (4):

Qij =
1
ω2

0

[∫ ∞

0

µ(t)dt

]
τij . (51)

If, for instance, this flow is in the x̂ direction with a
positive gradient in the ẑ direction, i.e. τxz > 0, one easily
convinces oneself that a long axis of the molecule will be,
on average, parallel to x̂ + ẑ, and a short axis parallel to
x̂− ẑ. Hence, cigar-shaped molecules will exhibit Qxz > 0,
whereas disk-shaped ones lead to Qxz < 0. In other
words, the shear flow exerts a torque on the molecules so
that the sign of:

∫ ∞

0

µ(t)dt = Imµ(ω = 0), (52)

which is also the sign of ∆2
µ for a smoothly decreasing

function Imµ(ω), is the same as the sign of b.
Secondly, the total VV spectrum is the sum of two

terms in equation (36): the first is proportional to the
backscattering VH spectrum and gives always a posi-
tive contribution to the intensity for all frequencies. Con-
versely, at very low frequencies, the second, q-dependent,
term may give rise to a negative contribution. This is
in contrast to the density-only model and may serve as
a simple test to determine whether or not translation-
orientation coupling is significant. Since the measured
spectrum should be positive whatever the frequency, one
would like to know if the proposed phenomenological equa-
tions ensure this property and, if necessary, what addi-
tional requirements have to be imposed on the memory
kernels to guarantee this positiveness. The phenomenolog-
ical equations allow to derive the appropriate conditions.
However, these conditions will appear more naturally and
in a transparent way in the microscopic approach. There-
fore their derivation will be postponed to Part II and
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we merely state here the result: the measurable spectra
in the three geometries VV, HH, VH, equations (36, 43)
and (48), are positive for all frequencies provided that:

a) the imaginary part of Γ ′(ω), ηb(ω) and ηs(ω) are pos-
itive for all frequencies;

b) the imaginary part of the translation-rotation coupling
fulfills:

[ImΓ ′(ω)][Imηs(ω)] − Λ′[Imµ(ω)]2 > 0. (53)

This conditions appear as a generalisation of the Onsager
relations for the dynamics of a coupled system and are, as
expected, independent of the a/b ratio. This corroborates
the argument that the positiveness of the spectra should
not depend on the relative strength of the two scattering
mechanisms. In view of the analytical form of the memory
kernels as given in equation (44), and with the numerical
values used in Section 3 for ∆ηb

, ∆ηs , ∆µ and Λ′, equa-
tion (53) is fulfilled for all frequencies if ∆2

Γ ′ > 1/2. Nev-
ertheless, in the frequency range considered, the role of
∆Γ ′ is important only in the q-independent part of equa-
tion (36) (rotational part of the spectrum):

1
ω

Im
[
1 − ω2

0

D(ω)

]
=

1
ω

Im
[
ωΓ ′(ω) − ω2

D(ω)

]
· (54)

We have checked that the neglect of ∆Γ ′ in D(ω), both in
the denominator of the r.h.s. of equation (54) and in r(ω),
has virtually no influence: it does not change the intensity
and the shape, either of the pure rotational spectrum, or
of the q-dependent spectrum discussed in Section 3. Con-
versely, this neglect allows for the analytic discussion of
Itot performed in that section. This justifies, a posteriori,
the simplification made there.

Finally, we already pointed out in the Introduction
that effects related to energy conservation, in particular
to thermal diffusion, are neglected in the present paper.
Some consequences of the heat diffusion process are well
known since the pioneer work of Landau and Placzek [3].
It gives rise to contributions in the propagator of longi-
tudinal phonons for very low frequencies. Other aspects
of the role of temperature fluctuations were taken into
account in [15]. There, it was shown that, if one deals
explicitly with the coupling of temperature to dielectric
fluctuations, one arrives at a rather complex form of the
coupling of detection channels and propagators of these
excitations. In order to describe this aspect within a phe-
nomenological approach, the constitutive equations of the
present paper have to be generalised and supplemented by
an equation of motion for the energy conservation, while
the detection mechanism, equation (12), will remain un-
changed.

This paper has benefited from many discussions of one of us
(R.M.P) with H.Z. Cummins on the light scattering mecha-
nisms. The latter was also instrumental in suggesting the col-
laboration that lead to the present paper.
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